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Techniques and Formulations for Mode
Coupling of Multimode Optical Fibers

KOHICHI TATEKURA, KIYOHIKO ITOH, MEMBER, IEEE, AND TADASHI MATSUMOTO

Abstract—Mode coupling, caused by random variations of core index or
random irregularities of the fiber wsdl, ioffuences the transmission char’-

acteristies of multimode opticaf fibers in a complicated way. The effects of

mode coup~mg in multimode optical fibers have beerr reported using

coupled power equations or power flow equations, and the good agreement
between theoretical and experfmerstaf results provides further evidence

that the power flow equation is a usefuf description of the power distribu-
tion in a mnMsnode optical fiber. From these situations, it would be nsefnf
to develop generaf means to anafyze power flow equations. IO this pafx?r, a
means applicable to any conpfing mechanism for treating the effects of
mode coupffng is given together with formal solntiosm

I. INTRODUCTION

PRESENTLY, multimode fibers are of interest in opti-

cal communication systems because of less stringent

requirements of optical carriers and lower loss splices

between fiber segments than single mode fibers. However,

the dispersion caused by the delay differences among

many modes of multimode fibers broadens optical signals,

or limits the information-carrying capacity of the com-

munication system. Moreover the mode coupling caused

by the random variations of the core index or the random

irregularities of the fiber wall complicates the characteris-

tics of the pulse propagation.

Some papers [1]–[3] on the effects of mode coupling in

multimode optical fibers have been reported. They have

treated coupled power equations [4] or power flow equa-
tions [2] for some interesting but simple models. Koyama

and Kobayashi [5] considered frequency characteristics of

multimode fibers to be important in optical transmission

system designs and proposed a perturbation method to

analyze coupled power equations. They measured optical

fiber transfer functions based upon the swept-frequency

technique for baseband signals and verified the good

agreement between theoretical and experimental results.

Mode coupling influences the transmission characteris-

tics of multimode fibers in such a complicated way that it

would be generally difficult to analyze those equations.

The main purposes of this paper are to present the means

to analyze power flow equations for any mode coupling

mechanism, and to give formal solutions which can be

evaluated numerically. As an example of one application,

a coupling model for step-index fibers will be studied in

detail, and the transmission characteristics are calculated.
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Fig. 1. The index profile of the core quoted from [6].

II. POWER FLOW EQUATION

To investigate the influences of the dispersion and the

mode coupling in multimode fibers, the parabolic class of

cylindrically symmetric-index profiles has been well

studied [3], [6], [7].

~(r,=jq’-’(ap”j”j<a ,,,

where nl is the maximum index of the core, nz is the index

of the cladding, a is the core radius, and p characterizes

the shape of the core index profile (Fig. 1). It is assumed

that the relative index difference A is small compared to

unit y.

Each mode propagating in an optical fiber is specified

by a pair of numbers (~, v) which are, respectively, the

radial and azimuthal order numbers in the field intensity

of that mode. For the step-index profile (p= m), ap-

proximate degeneracies exist among the propagation con-

stants /3 of the guided modes, and the propagation con-

stants depend only on a principal mode number m de-

fined by

m=2p+v. (2)

With this principal mode number, Gloge [2], who con-

sidered the mode coupling as a power diffusion, has

derived a partial differential equation which describes the

power flow of the coupled modes of step-index fibers:

where P is the Fourier transform or the baseband re-

sponse of the mode power, and the group delay r, the loss

constant a, and the power coupling coefficient h are
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functions of m which is treated as a quasi-continuous

variable.

Olshansky [3] considered that it should be assumed that

the degeneracies among the propagation constants also

hold for the other values p because the degeneracies exist

not only for the step-index profile (p= co) but also for the

parabolic-index profile (p= 2). These degeneracies have

been derived using a scalar theory in Streifer and Kurtz

[8], and using a vector theory in Kurtz and Streifer [9].

This paper also assumes that the power flow equation (3)

describes the power flow of the coupled modes for any

index profile p.

III. APPLICATION OF VARIATIONAL TECHNIQUES

The power flow equation (3) has been analyzed for

some interesting but simple models [2], [3]. However, the

mode coupling influences the transmission characteristics

of multimode fibers in a complicated way, so that it could

not be generally represented by such simple models. From

this situation, some general means to solve the power flow

equation must be found. In this paper, variational tech-

niques which can be applied to any index profile and to

any mode coupling mechanism will be used to solve the

power flow equation, and formal solutions will be repre-

sented.

The solution to (3) may be found by the technique of

separation of the variables. Upon substituting a trial func-

tion

P (qm,z) = e- Y(’’)zg(ti, m) (4)

with a parameter y which is the function of the baseband

frequency u into (3), we obtain

++(mh%g)+(y-’ti’-a)g=o“)
where partial derivatives a/am become total derivatives

d/din because g is a function only of the mode number m.

The boundary conditions [1] are as follows:

()&g =(g)m=M=”
m=mo

(6)

where mO and M are, respectively, the minimum and

maximum values of the mode number m. These boundary

conditions show that no power can be lost at m = m. (the

slope dg/ dm determines the rate of the power diffusion)

and no power propagates at the cutoff value m = M.

Next the variational representation for y and g must be

found. That is as follows:

[
y(ti,g) = ~mh ( ~ g)2 dm + iu~mrg2 dm + ~mag2 dm

-2(mhg&g)m=~]/~mg2 dm. (7)

To determine whether this expression gives a solution for

y whose first variation is zero when the functional form of

g is perturbed by a small amount 8g, we calculate the

variation.

8y~mg2 dm i- 2y~mg6g dm =2~mhg’8g’ dm

J J
+ 2iu mrgc$g dm + 2 magdg dm

–2(mhg’8g)~.M–2 (mhgi3g’)~.M

with

J
mhg’tlg’ dm = (mhg’6g)~. ~ – (mhg’bg)~. ~,

1978

(8)

—J( )nhg’ ‘8g dm

where the symbol ‘ is used for the derivative for m, that is,

d/din.

The variation in y is found to be

8y~mg2 dm= –2~[(mhg’)’+(y– iw–a)mg]8g dm

– 2(mhg’8g)~.~0 – 2(mhg8g’)~.M (9)

Therefore, the solution of (5), subject to the boundary

conditions (6), is equivalent to minimizing the functional y

independently of what boundary conditions 8g and i$g’

satisfy. As a trial function for g, a linear combination of

{u,(m), s > 1} which is complete within the span (mO,M)

will be used, where each us satisfies the boundary condi-

tions (6). Then g can be written as follows:

g(ti, nz)= ~ a“(ti)u,(m) (lo)
S>l

where as is the parameter to be determined.

Substituting (10) into (7) leads to

f
y ~ ~a’a]mu,uldm= ]Zz a ‘a ‘mhu~ u; dm

s 1 s I

!
-t- ia ~ ~ asalmru,uldm+ /xx a ‘a ‘mq u, dm.

s 1 3 1

(11)

The conditions for minimizing y may be written

-&=o, 1>1

or substituting (11)

/
y ~ asmu,ui dm= Jx a ‘mhu; u; dm

s s

+ iw J2 a ‘rnru~ u, dm + Jx a ‘mau~ Ut dm, 2>1.
s s

(12]

These equations can be represented by the matrix form

which is

(U+ icoT+A)a(a)= y(u)Sa(o) (13)

where a is the column vector of a‘, and U, T, A, and S are

symmetric matrices whose (s, 1) elements are, respectively,

defined by

/
U~l= mhu~u~ dm (14)
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J
T,{ = m~u,ul dm (15)

/
A~[ = mau,ul dm (16)

S,l = ~mu~ul dm, S,l>l. (17)

The complete solution of (3) is given as the superposi-

tion of the trial functions.

where the subscript k is used to label the eigenvalues y

and the eigenvectors a of (13). Ck should be determined

from the initial condition at z = O.

Multiplying the both sides of (18) at z = O by m~ la~ul,

and integrating over m lead to

~m(~)z.O~a$ldm= ~ck~m(~a&)(~a$l) dm

= ~ Ck(ak,Sa,) (19)
k

where ( , ) indicates a scalar product.

As is well known, the orthogonalities among the eigen-

vectors hold from (13) and the symmetries of the matrices

U, T, A, and S.

(ak, Sar)=O, k#r. (20)

From (19) and (20), ck is given by

Ck((l))=
(ak,b)

(ak, Sak)
(21)

where b is the column vector whose lth element is defined

by

bl= ~m(P)z=Oul dm, />1, (22)

In optical transmission systems, only the total power

over all the modes is detected. Because mth group of the

degenerate modes consists of about 2m modes [2], [3], the

total power P~ can be written as follows:

K \-

‘ (23)

From (21) and (23), the total power P~ is given by

(ak~b)(ak~bl) e_y,z
P,(u, z)= ~ -

~ (a~,sak)
(24)

where the proportional constant of (23) is set as unity for

simplicity, and bl is the constant column vector whose

elements are given by setting (P)= _O equal to unity in (22).

That is

(b,),= ~mul dm, 1>1. (25)

Eigenvector given by Marcuse’s algebraic eigenvalue

equation [10] corresponds to the mode power directly, and
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the order of his matrix is equal to the number of the

guided modes in a multimode fiber. Therefore, his eigen-
value equation is unsuitable for treating very many

modes. Our eigenvalue equation is suitable for analyzing

multimode fibers with many guided modes because the

eigenvectors a~ determine not the mode power itself but

the envelope which is the superposition of the mode

power.

Transmission characteristics of multimode fibers are

significantly influenced also by input mode power distrib-

ution [11 ]. For a coupling model first proposed by Gloge

[2], [12], he has solved the power flow equation for the

Gaussian input spatial distribution, and subsequently

Gambling et al. [13] for a plane wave input and Cartledge

[14] for a Lambertian input, respectively. Their derived

solutions differ. Our method can treat not only any cou-

pling mechanism as in previous works [ 1]-[3] but also any

input mode distribution using (13) –(25), and obtain the

final solution (24) with the same form.

IV. ONE MODEL OF COUPLING MECHANISM

Once the forms of the parameters ~, a, and h are

specified, the power flow equation can be solved by

means of the variational techniques discussed above. As

an example of an application, a step-index fiber will be

studied. The group delay ~ of the cylindrically symmetric

index profile (1) has been derived by means of the WKB

method [6].

T=:[l+S’(3Y+2
1++ S’2(:Y’+2“

For step-index fibers,

~=:[’+’m’] ‘=m

(26)

(27)

The loss constant a and the power coupling coefficient h

are specified by

where

(28)

(29)

(30)

See Fig. 2. aO, An, A, and IV are, respectively, the loss

constant common to all the modes, the index difference
n, – rz2, a dimensionless constant and the total number of

the guided modes. D and 62 are, respectively, the correla-

tion length and the variance of the random distortion of

multimode fibers. These parameters are discussed in

greater detail in the Appendix.

Substituting (27)–(29) into (3), we obtain
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i
Multimode Opt!cal Fiber

w!th Random Distot!on (D.62)

Fig. 2. The multimode optical fiber with the random distortion whose
correlation length and variance are, respectively, D and 62.

()41ax3ap
(31)

x ax L, ax

where

~=E,
M

O<x<l. (32)

In this model, it is convenient to consider the next trial

function for P

P(ti,x, z)=exp [ –(aO+iCJnl/C)Z] g(u,x)

.exp [ – y(co)z/L,]. (33)

Following procedures similar to those of $.3, the mode

power P and the total power P~, which are slightly mod-

ified from (18) and (24), become as follows:

(a~,b)
P(~,x,z)=exp [ –(aO+ io.ml/c)z] ~ ~a,,~a~)

“[?a~u(x)lexp[-y ’z/Ll“(34)

“exp [ – y~z/~,] (35)

where the function u,(x) is defined within the span (O, 1),

and b and b] are, respectively, given from (22) and (25) by

replacing m by x, and y~ and a~ are the eigenvalue and

the eigenvector of

(U+ OT)a,(U) = y,(w)~a,(co), k>l (36)

with

‘=An(AN+io+)
(37)

The matrix 6T of this model corresponds to the general

form iwT+ A of (13), and the elements of U, T, and S are

defined by

U,[ = ~X3U;U; dx (38)

/
T~l = X3U,U[ dx (39)

J
S,l = XU,U1 dx, S,l>I. (40)

V. TRANSMISSION CFLARACTERISTICS OF

MULTIMODE FIBER FOR THE ABOVE MODEL

After the transient state has died out, the propagating

pulse approaches a Gaussian provided the pulse spread is

such that its width is much larger than the width of the

input pulse of arbitrary shape, and the steady state distrib-

ution of the power over all the modes has become inde-

pendent of the initial condition [15]. Since the steady-state

power flow is most important, it is sufficient to consider

the input pulse as an impulse both in time and in space,

that is (P)z =0 = 1. However, input pulses of any shape can

be treated similarly.

A. Power Distribution for C W Excitation

The power distribution for continuous wave excitation,

which corresponds to the baseband frequency u = O, will

be studied with the above model. The power loss that

results from the coupling of the guided modes directly to

the radiation field is ignored, that is A of (28)= O.

1) Attenuation of Mode Power: For u= O, the mode

power becomes as follows:

P(o,x,z)=~ (aO~’bl)) [ ~ a&u$(X)] exp [ - Yo~z/L.l

k (aOk) ‘aOk S

(41)

where the term exp (— aoz) common to all the modes is

ignored in the remainder of this paper because this loss

can be accounted for later by multiplying the final solu-

tions, and b becomes bl for (P)z=o = 1 from (22) and (25).

yo~ and ao~ are, respectively, the eigenvalue and the eigen-

vector of

ua~~ = yok sao~, k>l. (42)

In the steady state (z/L,>> 1), the mode power distribu-

tion becomes independent of the initial condition at z = O.

P(O,x,z)a ~ a&u,(x) exp [ – yolz/~,], z/L, >>l
s

(43)

where yol is the minimum eigenvalue of (42), and this

relation holds for any initial excitation by replacing yOl

and aol, respectively, by yl (whose real part is the small-

est of those of the eigenvalues of (36)) and al of (36). In

Fig. 3, attenuation ratio is defined by the relative mode

power to the fundamental mode power, that is,
P (O,x, z)/P (O, O, z). Fig. 3 shows a mode filtering effect

due to differential mode attenuation [16]: that is, the

higher mode suffers a relatively higher loss compared to

that of the lower mode.

2) Optical Power Flow: The mode power P is not the

real power flow because the number of the modes speci-

fied by m are approximately 2m. Therefore, the true

power flow specified by m is proportional to mP or xP,

which is called the optical power flow in this paper. For

step-index fibers, the output angle of the power flow from

the fiber end is proportional to the mode number m,
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Mode Dependence

5 of Power Attenuation
Y
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Fig. 3. The attenuation of the mode power versus the normalized mode
number m/M = x on some parameters of the normalized fiber length

z/l,, when all the modes equally excited at the input z = O, where the
fundamental mode power is normalized to unity and z/L, = co corre-
sponds to the steady state.
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Fig. 4. The optical power flow which is normalized so that the peak
values are unity.

therefore the optical power flow versus the mode number

corresponds to the output pattern from the fiber end [2].

Mode distribution in Fig. 4 is the optical power flow

normalized so that the peak value is unity at given fiber

length z. As shown in Fig. 4, the effective spatial band-

width or the effective numerical aperture decreases to

some fiber length and eventually becomes a constant

value.

3) Loss of the Total Power: Since the coupling among

the guided modes must also cause the coupling of the

guided modes to the radiation field, the radiation loss is

unavoidable, and it is therefore important to investigate

the radiation loss. The power loss per unit lengtl

1
-y(z)= – —- ~PT(o,z)

PT(O, z) dz

(ao~, b,)’
PT(O, Z) = ~

. (ao~, SaO,)
exp [ – yO~z/Lf

is

(44)

. (45)

Attenuation of a multimode fibers with the mode cou-
pling varies with fiber length because of mode selective

attenuation. However, as shown in Fig. 5, the power loss

per unit length approaches to a constant value describing

its steady-state value as the optical power propagates in a

multimode fiber.

7

6

5

4 -
Total Power Loss per Umt Length

J
3 -

g
&

2

1

0 1 2 3 f+ 5

Normalized F!ber Length z/Ls

Fig. 5. The power loss per unit length.

07 1

06

05

01

0

Normalized Time Delay

of Impulse Response

— AT(z)/ATs
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Value

Normalized F!ber Length z/Ls

Fig. 6. The upper line is the delay time AT(z) normalized by AT,

(= AnL,/. is the width of the distorted pulse at the fiber length z = L,

in the absence of the mode coupling) and the lower line corresponds

to the steady state values.

B. Delay Time and Spread of Impulse Response

The transmission characteristics of optical fibers can be

described by specifying the moment M.(z) of the full

impulse response. This moment is defined by

[

p tnpT(Jz)dt
Mn(z)= ‘m n> O (46)

(i)n ~%(u,z).=o’

where P~(t, z) is the inverse Fourier transform of P~(u, z).

1) Delay Time of Impulse Response: The delay time

T(z) of the impulse response is given by (see Fig. 6)

M, (z)
T(z) -;z+AT(z)=—.

MO(Z)
(47)

Continuous mode mixing reduces the signal distortion,

and eventually forces all the modes to propagate at an

average velocity.

2) Spread of Impulse Response: The rms width U(Z) of

the impulse response is given by (see Fig. 7)
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Fig. 7. The upper line is the rrns width o(z) normalized by A T, and the

lower line is therms width u,(z) in the steady state.

[

h42(z) 1
1/2

u(z)= — – T(Z)2 .
Me(z)

(48)

It is well known that the modal delay distortion will

increase linearly up to some fiber length (the transient

state) and thereafter increase as the square root of length

(the steady state).

3) Delay Time and Spread of Impulse Response in Steady

State: Next we proceed to describe the approximate

evaluation of the eigenvalue equation (36) by perturbation

techniques. For small value of 13T, the solutions of (36) are

only slightly different from those of (42). For our pur-

poses, the second-order perturbations of the eigenvalues

are most important. From second-order perturbation the-

ory, the eigenvalues can be approximately written as

follows:

Yk (0)=Yok+exk+82Yk, k>l (49)

with

(Uok,i%,k)

‘k=(a~kj~~~~)
(50)

(ao,, TaOk)2
Yk= 1 ~

(aOk,Sai3k) r+k (hk - hr)(aOr,SaOr)”

(51)

Only the first term of the series of (35) needs to be
considered for large z if yO1> yok for all k >2. The

steady-state impulse response P, becomes

(a,,b,)2
PT((IJ, Z)+P, (U, z) =

(a,,Sa,)

Now the rms width o,(z) and

exp [ –ylz/L, ],

Z/~,>>l. (52)

the delay time AT,(z) in the
steady state can be determined from (37), ‘(42), and

(49)-(51).

()

1/2
u~(z)=AT, 2Y1; (53)

s

AK (Z) =Aq (Xl –2AnAATq): (54)
s

where

In Figs. 6 and 7, the lower lines are, respectively, AK(z)

and u,(z).

As the fiber length becomes large, AT(z) and u(z)

approach AT, (z) and u,(z), respectively. These circum-

stances show that all the power of the guided modes

propagates approximately at the same velocity, and the

impulse response broadens as the square root of the fiber

length in the steady state.

Equation (53) can be rewritten as follows:

L 1/2

()

U,(z) =An: 2Y,; . (56)

AnZ/C is the width of the distorted pulse at the end of a

fiber carried by all the modes in the absence of the mode

coupling [6], therefore the form of (56) corresponds to the

result that Marcuse [17] has predicted. L, of (30) may be

considered as a characteristic that is required for the

steady state to establish itself.

VI. CONCLUSION

A method of analyzing power flow equations were

investigated, and the formal solutions of these equations

were represented. This method can be applied to any

coupling mechanism, and also to different types of partial

differential equations provided the mode number is

assumed to be continuous. As an example of applications,

some characteristics of multimode fibers were calculated

for a coupling model on step-index fibers. Frequency

characteristics of multimode fibers are important to de-

sign SNR, equalizers, etc. in an optical communication

system. The method developed in this paper is useful

especially to relate frequency characteristics and mode

coupling effects in multimode fibers.

VII. APPENDIX

The power coupling coefficient h is given by Marcuse

[4].

h=lKm,m+,[2F(Bm –8n+l) (57)

where Km ~ ~ ~ is the mode coupling coefficient between

the mode’ m and m t 1, and F( & – &L,) is the power

spectrum of the coupling function $(z) which describes

the random distortion of multimode fibers [4].

If the coupling function j(z) is supposed to be a ran-

dom stationary variable whose correlation function is

assumed to be a Gaussian, the power spectrum becomes

F(& –~mfl)= fi 62De-(D/2)2(Bm-Bm+’)2. (58)

For purposes of multimode operation, approximate ex-

pressions hold for the propagation constants and the

coupling coefficients which are valid far from cutoff [16].

(59)
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Icm“ ~~ (60)
From (60) and N= 7r2i142/8, the power loss a becomes

2a (28) of $.4, which loss includes the power loss aO in the

lCmKmL1 absence of the mode coupling. A defined by (65) becomes
K m,m?l= —2in, K (61) independent of the distortion provided (2/D)2~( ~-

A?J2.
where K is the wave number of free space and Km is the

radial component of K.

From (57)–(6 1), the power coupling coefficient h be- II]

comes (29) of $.4 with the assumption
[2]

(2/D)2
exp [–(D/2)2(P~ –&t1)2]= (P _P _l)Z ‘

m ~+

[3]

[4]

(2/D )2<<(& -~~tl)’ . (62) ‘5]

[6]

The loss caused by coupling directly to the radiation

field becomes [7] [7]

p= ~n~”
[10]

where 2P means the summation for the different types of

the radiation fields.

For most scattering problems, it is sufficient to use the ‘1’]

coupling coefficients to the radiation fields of free space.

In this case [16],
[12]

K; G ii2
~=~ A (64) [131

n 2a2D

with [14]

n2KD 2J~(pa)
A=;~~

v . (~2+rr;K2)
exp [ –(D/z)2(D–/.l~)2] @ [151

(65) [16]

where the factors e., eP, and eVPl are specified by Marcuse ~171

[16],
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