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Techniques and Formulations for Mode
Coupling of Multimode Optical Fibers

KOHICHI TATEKURA, KIYOHIKO ITOH, MEMBER, IEEE, AND TADASHI MATSUMOTO

Abstract—Mode coupling, caused by random variations of core index or
random irregularities of the fiber wall, influences the transmission char-
acteristics of multimode optical fibers in a complicated way. The effects of
mode coupling in multimode optical fibers have beer reported using
coupled power equations or power flow equations, and the good agreement
between theoretical and experimental results provides further evidence
that the power flow equation is a useful description of the power distribu-
tion in a multimode optical fiber. From these situations, it would be useful
to develop general means to analyze power flow equations. In this paper, a
means applicable to any coupling mechanism for treating the effects of
mode coupling is given together with formal solutions.

I. INTRODUCTION

RESENTLY, multimode fibers are of interest in opti-

cal communication systems because of less stringent
requirements of optical carriers and lower loss splices
between fiber segments than single mode fibers. However,
the dispersion caused by the delay differences among
many modes of multimode fibers broadens optical signals,
or limits the information-carrying capacity of the com-
munication system. Moreover the mode coupling caused
by the random variations of the core index or the random
irregularities of the fiber wall complicates the characteris-
tics of the pulse propagation.

Some papers [1}-{3] on the effects of mode coupling in
multimode optical fibers have been reported. They have
treated coupled power equations [4] or power flow equa-
tions [2] for some interesting but simple models. Koyama
and Kobayashi [5] considered frequency characteristics of
multimode fibers to be important in optical transmission
system designs and proposed a perturbation method to
analyze coupled power equations. They measured optical
fiber transfer functions based upon the swept-frequency
technique for baseband signals and verified the good
agreement between theoretical and experimental results.

Mode coupling influences the transmission characteris-
tics of multimode fibers in such a complicated way that it
would be generally difficult to analyze those equations.
The main purposes of this paper are to present the means
to analyze power flow equations for any mode coupling
mechanism, and to give formal solutions which can be
evaluated numerically. As an example of one application,
a coupling model for step-index fibers will be studied in
detail, and the transmission characteristics are calculated.

Manuscript received June 6, 1977; revised October 3, 1977.
The authors are with the Department of Electrical Engineering,
Hokkaido University, Sapporo, Japan.

3

©0 np

™

P=1 ny

Index Profile nf{r)

3

~
o
Q

Radius r

Fig. 1. The index profile of the core quoted from [6].

II. Powgr FLOW EQUATION

To investigate the influences of the dispersion and the
mode coupling in multimode fibers, the parabolic class of
cylindrically symmetric-index profiles has been well
studied [3], [6]. [7].

nI[I—ZA(é)p]I/Z, r<a

ny(1 _'2A)1/2= 3y

(1)

n(r)=
r>a

where n, is the maximum index of the core, n, is the index
of the cladding, a is the core radius, and p characterizes
the shape of the core index profile (Fig. 1). It is assumed
that the relative index difference A is small compared to
unity.

Each mode propagating in an optical fiber is specified
by a pair of numbers (p,») which are, respectively, the
radial and azimuthal order numbers in the field intensity
of that mode. For the step-index profile (p=00), ap-
proximate degeneracies exist among the propagation con-
stants B of the guided modes, and the propagation con-
stants depend only on a principal mode number m de-
fined by

2

With this principal mode number, Gloge [2], who con-
sidered the mode coupling as a power diffusion, has
derived a partial differential equation which describes the
power flow of the coupled modes of step-index fibers:

—8—P+inP= —aP+ 1 —a-(mh-ﬁ—P)
0z m om om

m=2u+v.

3)

where P is the Fourier transform or the baseband re-
sponse of the mode power, and the group delay 7, the loss
constant «, and the power coupling coefficient A are

0018-9480/78 /0700-0487300.75 © 1978 IEEE



488

functions of m which is treated as a quasi-continuous
variable.

Olshansky [3] considered that it should be assumed that
the degeneracies among the propagation constants also
hold for the other values p because the degeneracies exist
not only for the step-index profile (p= o) but also for the
parabolic-index profile (p=2). These degeneracies have
been derived using a scalar theory in Streifer and Kurtz
[8], and using a vector theory in Kurtz and Streifer [9].
This paper also assumes that the power flow equation (3)
describes the power flow of the coupled modes for any
index profile p.

III. APPLICATION OF VARIATIONAL TECHNIQUES

The power flow equation (3) has been analyzed for
some interesting but simple models [2], [3]. However, the
mode coupling influences the transmission characteristcs
of multimode fibers in a complicated way, so that it could
not be generally represented by such simple models. From
this situation, some general means to solve the power flow
equation must be found. In this paper, variational tech-
niques which can be applied to any index profile and to
any mode coupling mechanism will be used to solve the
power flow equation, and formal solutions will be repre-
sented.

The solution to (3) may be found by the technique of
separation of the variables. Upon substituting a trial func-
tion

P(w,m,z)=e 7 g(w,m) | 4)
with a parameter y which is the function of the baseband
frequency w into (3), we obtain

1 d d . _
Z%(m %g)+(y—zwfr a)g=0 (5)
where partial derivatives d/dm become total derivatives
d/dm because g is a function only of the mode number m.

The boundary conditions [1] are as follows:

(Edn; )m=m0=(g)m=M=O (6)

where m, and M are, respectively, the minimum and
maximum values of the mode number m. These boundary
conditions show that no power can be lost at m = my, (the
slope dg/dm determines the rate of the power diffusion)
and no power propagates at the cutoff value m=M.

Next the variational representation for y and g must be
found. That is as follows:

2
v(w,g)= [fmh(zdn—l g) dm+iwfm7g2 afm+fmozg2 dm

-2(mhg$ g)m=M]/fmg2 am. (7)

To determine whether this expression gives a solution for
v whose first variation is zero when the functional form of
g 1s perturbed by a small amount 8g, we calculate the
variation.
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Syfmg2 dm+27fmg8g dm=2fmhg’8g’ dm
+2iwfm7g8g dm +2fmag8g dm

—2(mhg’8g),,_ p,—2(mhgdg’),, _ (8)

with
[ mbg'bg’ dim=(mhg'Sg),, .y~ (mhg'3¢) = m,

—f(nhg’)’Sg dm

where the symbol ’ is used for the derivative for m, that is,
d/dm.
The variation in y 1s found to be

8yfmg2 dm= —2][(mhg’)’+(y—im—a)mg]b‘g dm

—2(mhg’88) = my— 2(mhgdg") e nge (9)

Therefore, the solution of (5), subject to the boundary
conditions (6), is equivalent to minimizing the functional y
independently of what boundary conditions g and &g’
satisfy. As a trial function for g, a linear combination of
{u,(m), s > 1} which is complete within the span (my, M)
will be used, where each u, satisfies the boundary condi-
tions (6). Then g can be written as follows:

glw.m)= 2 a*(w)u,(m)

s=1

(10)

where a° is the parameter to be determined.
Substituting (10) into (7) leads to

yfz > a‘a'muy, dm=f2 > a‘a’'mhulu] dm
s ] s ]

+iwf2 > a‘a‘mruy, dm+f2 > a‘a'mau,u, dm.
s s !

(1)
The conditions for minimizing y may be written
d
—v=0, i>1
dal
or substituting (11)
yf > a*mu,u, dm= f > a*mhu’u; dm
+iwf 3 a*mruy, dm+f2asmausu, dm, I>1.
(12)

These equations can be represented by the matrix form
which is

(U+ioT+ 4)a(w)=vy(w)Sa(w) (13)
where a is the column vector of ¢°, and U, T, 4, and S are

symmetric matrices whose (s,/) elements are, respectively,
defined by

(14)
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Ts,=fm'rusul dm (15)
As,=fmausu, dm (16)
Ss,=fmusu, dm, s,1>1. 17

The complete solution of (3) is given as the superposi-
tion of the trial functions.

P(om.2)= 3 C,(e)| Saf @ m) e (19)

where the subscript & is used to label the eigenvalues y
and the eigenvectors a of (13). C, should be determined
from the initial condition at z=0.

Multiplying the both sides of (18) at z=0 by mX alu,
and integrating over m lead to

fm(P)FO; a'u, dm= % Ckfm(g a,fus)(zla,’u,) dm
=2 Ci(a,Sa,) (19)
k

where ( , ) indicates a scalar product.

As is well known, the orthogonalities among the eigen-
vectors hold from (13) and the symmetries of the matrices
U, T, A, and S.

(a4, 8a,)=0, k#*r. (20)
From (19) and (20), C, is given by
(a,b)
G (W)= ——= 21
, (a, Sar)

where b is the column vector whose /th element is defined
by

b,=fm(P)z=Ou, dm, 1>1.

In optical transmission systems, only the total power
over all the modes is detected. Because mth group of the
degenerate modes consists of about 2m modes [2], [3], the
total power P, can be writien as follows:

(22)

PT(w,z)ocme(w,m,z) dm=", Ck(f > agmu, dm)e—w.
k s

(23)
From (21) and (23), the total power P is given by

P(wz)= 2 (@ b)(ay,b 1)

k (ak’ k)

where the proportional constant of (23) is set as unity for
simplicity, and b, is the constant column vector whose
elements are given by setting (P),_, equal to unity in (22).
That is

24)

(by),= f mu, dm, 1> 1. (25)

Eigenvector given by Marcuse’s algebraic eigenvalue
equation [10] corresponds to the mode power directly, and
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the order of his matrix is equal to the number of the
guided modes in a multimode fiber. Therefore, his eigen-
value equation is unsuitable for treating very many
modes. Our eigenvalue equation is suitable for analyzing
multimode fibers with many guided modes because the
eigenvectors a, determine not the mode power itself but
the envelope which is the superposition of the mode
power.

Transmission characteristics of multimode fibers are
significantly influenced also by input mode power distrib-
ution [11]. For a coupling model first proposed by Gloge
[2], [12], he has solved the power flow equation for the
Gaussian input spatial distribution, and subsequently
Gambling e al. [13] for a plane wave input and Cartledge
[14] for a Lambertian input, respectively. Their derived
solutions differ. Qur method can treat not only any cou-
pling mechanism as in previous works [1]-{3] but also any
input mode distribution using (13)—(25), and obtain the
final solution (24) with the same form.

IV. ONE MoDEL OF COUPLING MECHANISM

Once the forms of the parameters 7, «, and h are
specified, the power flow equation can be solved by
means of the variational techniques discussed above. As
an example of an application, a step-index fiber will be
studied. The group delay 7 of the cylindrically symmetric
index profile (1) has been derived by means of the WKB
method [6].

n 2 20/p+2
mH
13 m \de/p+2
ty5 (ﬁ) } (26)
For step-index fibers,
G my? -
-2 [1+A(M) } p=c0. @7)

The loss constant a and the power coupling coefficient
are specified by

a=ay+A, LN(%) (28)
M?(m\2
h= L, (ﬂ) (29)
where
2
D
LSE—a—— 30
V7 ¢* (0)

See Fig. 2. ay, A,, A, and N are, respectively, the loss
constant common to all the modes, the index difference
n,—n,, a dimensionless constant and the total number of
the guided modes. D and a° are, respectively, the correla-
tion length and the variance of the random distortion of
multimode fibers. These parameters are discussed in
greater detail in the Appendix.
Substituting (27)—(29) into (3), we obtain
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Multimode Optical Fiber
with Random Distotion (D.o2)

Fig. 2. The multimode optical fiber with the random distortion whose
correlation length and variance are, respectively, D and °.

O pi(agtiomt)P=—a (an+iZ )P
Iz +(ao lw?) = ,,( lw?)L

1 9 (x*09
+;3;(fs axP) (31

where

0<x<1. (32)

="
=7
In this model, it is convenient to consider the next trial
function for P

P(w,x,z)=exp [ —(apg+iwn,/c)z] g(w,x)

-exp [ —y(w)z/L]. (33)

Following procedures similar to those of §.3, the mode
power P and the total power Py, which are slightly mod-
ified from (18) and (24), become as follows:

. (ak’b)
P(w,x,z)=exp [“(‘Xo‘*'"""l/c)z]% (a,, Sa)

) [ g aiu, (x)} exp [ —vz/ L) ‘(34

(@, b)(ay, by)
(a, Say)

—wz/ L] (39)

where the function u,(x) is defined within the span (0, 1),
and b and b, are, respectively, given from (22) and (25) by
replacing m by x, and vy, and g, are the eigenvalue and
the eigenvector of

(U+0T)a, (w) = v (w)Sa (w),

Pr(w,z)=exp [ —(ap+iwn,/c)z] %

-exp |

k>1  (36)

with
(37)

The matrix 87 of this model corresponds to the general
form iwT+ A of (13), and the elements of U, T, and § are
defined by

LS

q,j}%wdx (38)
T,= f x3u uy dx (39)
.%=j}%wdn 5,0>1 (40)
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V. TRaNSMISSION CHARACTERISTICS OF
MuLTIMODE FIBER FOR THE ABOVE MODEL

After the transient state has died out, the propagating
pulse approaches a Gaussian provided the pulse spread is
such that its width is much larger than the width of the
input pulse of arbitrary shape, and the steady state distrib-
ution of the power over all the modes has become inde-
pendent of the initial condition [15]. Since the steady-state
power flow is most important, it is sufficient to consider
the input pulse as an impulse both in time and in space,
that is (P),_o=1. However, input pulses of any shape can
be treated similarly.

A. Power Distribution for CW Excitation

The power distribution for continuous wave excitation,
which corresponds to the baseband frequency w=0, will
be studied with the above model. The power loss that
results from the coupling of the guided modes directly to
the radiation field is ignored, that is 4 of (28)=0.

1) Attenuation of Mode Power: For «w=0, the mode
power becomes as follows:

P(0,x,z)=> (l(lo:;ai) [ > asu, (x)} exp [ —vwz/ L]
(41)

where the term exp (— ayz) common to all the modes is
ignored in the remainder of this paper because this loss
can be accounted for later by multiplying the final solu-
tions, and b becomes b, for (P),._,=1 from (22) and (25).
Yor and ay, are, respectively, the eigenvalue and the eigen-
vector of

UaOk Yoxr SaOk’ k>1. (42)

In the steady state (z/ L >1), the mode power distribu-
tion becomes independent of the initial condition at z=0.

P(0,x,z) o 3 agu,(x) exp [~ Y02/ L] z/L>1

(43)

where vy, is the minimum eigenvalue of (42), and this
relation holds for any initial excitation by replacing v,,
and g, respectively, by vy, (whose real part is the smali-
est of those of the eigenvalues of (36)) and q, of (36). In
Fig. 3, attenuation ratio is defined by the relative mode
power to the fundamental mode power, that is,
P(0,x,z)/P(0,0,z). Fig. 3 shows a mode filtering effect
due to differential mode attenuation [16]: that is, the
higher mode suffers a relatively higher loss compared to
that of the lower mode.

2) Optical Power Flow: The mode power P is not the
real power flow because the number of the modes speci-
fied by m are approximately 2m. Therefore, the true
power flow specified by m is proportional to mP or xP,
which is called the optical power flow in this paper. For
step-index fibers, the output angle of the power flow from
the fiber end is proportional to the mode number m,
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Fig. 3. The attenuation of the mode power versus the normalized mode
number m/M = x on some parameters of the normalized fiber length
2/ Ly when all the modes equally excited at the input z =0, where the
fundamental mode power is normalized to unity and z/ L =co corre-
sponds to the steady state.

Mode Distribution of
Optical Power Flow

Parameter
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Mode Distribution
(2]

0 2 4 6 8 10
Normalized Mode Number m/M

Fig. 4. The optical power flow which is normalized so that the peak
values are unity.

therefore the optical power flow versus the mode number
corresponds to the output pattern from the fiber end [2].
Mode distribution in Fig. 4 is the optical power flow
normalized so that the peak value is unity at given fiber
length z. As shown in Fig. 4, the effective spatial band-
width or the effective numerical aperture decreases to
some fiber length and eventually becomes a constant
value.

3) Loss of the Total Power: Since the coupling among
the guided modes must also cause the coupling of the
guided modes to the radiation field, the radiation loss is
unavoidable, and it is therefore important to investigate
the radiation loss. The power loss per unit length is

V(o)== 5oy d Pr0) (44)
ors by ?
P(0,2)= 2 ‘(——‘_‘)_ exp [“ YOkZ/Ls]' (45)

s (Ao Sag)

Attenuation of a multimode fibers with the mode cou-
pling varies with fiber length because of mode selective
attenuation. However, as shown in Fig. 5, the power loss
per unit length approaches to a constant value describing
its steady-state value as the optical power propagates in a
multimode fiber.

491

7
6
5
4t
" Total Power Loss per Unit Length
—
~ 37
N
pat
2
14
0 1 2 3 4 5
Normalized Fiber Length z/ls
Fig. 5. The power loss per unit length.
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Fig. 6. The upper line is the delay time AT(z) normalized by AT,
(=4, L,/ c is the width of the distorted pulse at the fiber length z= L
in the absence of the mode coupling) and the lower line corresponds
to the steady state values.

B. Delay Time and Spread of Impulse Response

The transmission characteristics of optical fibers can be
described by specifying the moment M,(z) of the full
impulse response. This moment is defined by

fw t"Pp(t,z) dt
M,(z)={ "

3 , n>0
(i)"WPT(wsZ)w=o

(46)

where Pr(t,z) is the inverse Fourier transform of P(w,z2).
1) Delay Time of Impulse Response: The delay time
T (2) of the impulse response is given by (see Fig. 6)

M\(z)
My(z)

Continuous mode mixing reduces the signal distortion,
and eventually forces all the modes to propagate at an
average velocity.

2) Spread of Impulse Response: The rms width ¢(z) of
the impulse response is given by (see Fig. 7)

T(z)z%‘—z+AT(z)= (47)



492

100
Spread of Impulse Response ~ __—7___-

o5 S

3 -

N oos0 b g 0{2)/ATs

) il

o0 i Steady-State
025 4 value
0 1 2 3 4 5
Normalized Fiber Length z/ls
Fig. 7. The upper line is the rms width o(z) normalized by AT, and the

lower line is the rms width ¢,(z) in the steady state.

M,(2)
M(2)

172
o(z)= [ - T(z)z} . (48)

It is well known that the modal delay distortion will
increase linearly up to some fiber length (the transient
state) and thereafter increase as the square root of length
(the steady state).

3) Delay Time and Spread of Impulse Response in Steady
State: Next we proceed to describe the approximate
evaluation of the eigenvalue equation (36) by perturbation
techniques. For small value of 47, the solutions of (36) are
only slightly different from those of (42). For our pur-
poses, the second-order perturbations of the eigenvalues
are most important. From second-order perturbation the-
ory, the eigenvalues can be approximately written as
follows:

Ye (@)= yor + 80X, + 0%Y,, k>1 (49)
with
Ao, 1@
X,= (@ors Tagy) (50)
(@oks Sagy)
,Tag,)’
Y, = 1 (ao,, Tag,) (51)

B (@ors Sagy) rek (Yox — Yor)(@q,» Say,) '

Only the first term of the series of (35) needs to be
considered for large z if yg;> vy for all k>2. The
steady-state impulse response P, becomes

(al’bl)2

Pr(w,z)—»P (w,z)= m

exp [~ viz/L,],

z/L>1. (52)

Now the rms width o,(z) and the delay time A7,(z) in the
steady state can be determined from (37), (42), and
49)-(51).

(53)

(54)

7 \1/2
o.()=a7, (27, £ )

ATS(Z)=ATs(X1‘2AnANY1)%

5
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where

LS
In Figs. 6 and 7, the lower lines are, respectively, AT (z)
and o,(z).

As the fiber length becomes large, AT(z) and o(2)
approach AT,(z) and o,(z), respectively. These circum-
stances show that all the power of the guided modes
propagates approximately at the same velocity, and the
impulse response broadens as the square root of the fiber
length in the steady state.

Equation (53) can be rewritten as follows:

LX 1/2
os(z)=A,,§(2 Y17) .

A,z /c is the width of the distorted pulse at the end of a
fiber carried by all the modes in the absence of the mode
coupling [6], therefore the form of (56) corresponds to the
result that Marcuse [17] has predicted. L, of (30) may be
considered as a characteristic that is required for the
steady state to establish itself.

VL

A method of analyzing power flow equations were
investigated, and the formal solutions of these equations
were represented. This method can be applied to any
coupling mechanism, and also to different types of partial
differential equations provided the mode number is
assumed to be continuous. As an example of applications,
some characteristics of multimode fibers were calculated
for a coupling model on step-index fibers. Frequency
characteristics of multimode fibers are important to de-
sign SNR, equalizers, etc. in an optical communication
system. The method developed in this paper is useful
especially to relate frequency characteristics and mode
coupling effects in multimode fibers.

(56)

CONCLUSION

VII. APPENDIX

The power coupling coefficient & is given by Marcuse

[4].
h=le,mil|2F(Bm-Bmil) (57)

where K, ., is the mode coupling coefficient between
the mode m and m=1, and F(B,,— B, is the power
spectrum of the coupling function f(z) which describes
the random distortion of multimode fibers [4].

If the coupling function f(z) is supposed to be a ran-
dom stationary variable whose correlation function is
assumed to be a Gaussian, the power spectrum becomes

F(Bp=Bpsr) =V 3°De™ P/ G (58)

For purposes of multimode operation, approximate ex-
pressions hold for the propagation constants and the
coupling coefficients which are valid far from cutoff [16].

1
ﬂm_ﬁmil'__ﬂ(xr%l_’cr%lil) (59)
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mm

K, = —2; (60)
Kb 11
Km,mil_ 21'an (61)

where K is the wave number of free space and «,, is the
radial component of K.
From (57)-(61), the power coupling coefficient 2 be-

comes (29) of §.4 with the assumption

: /Dy
o LB B =
/DY« By - (62)

The loss caused by coupling directly to the radiation
field becomes {7]

n K

a=3 [™IK,

JF(B-B, )’B' B (63

with

p=\nK -2
where 2, means the summation for the different types of
the radiation fields.
For most scattering problems, it is sufficient to use the
coupling coefficients to the radiation fields of free space.

In this case [16],
k2 V7 6?

4 64
"5 (64)

X =

with

mKD Y (pa) ) )

—2 (i) © xp [ ~(D/2(B-B,)"] 4B
(65)

where the factors e,, e,, and e,,; are specified by Marcuse
[16].

upl f
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From (60) and N =7>M?2/8, the power loss & becomes
(28) of §.4, which loss includes the power loss «, in the
absence of the mode coupling. 4 defined by (65) becomes
independent of the distortion provided (2/D)*<(B—
Bn)’.
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